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) cOMPOSITION OF TWO SIMPLE HARMONIC MOTIONS IN A STRAIGHT LINE °
The two simple harmonic vibrations are represented by the equations
Yy =agsin (ot + a) (1)
and y, = .'l',sln (Wl +a,) - (2)
y,and y, are the displacements of a particle due (o the two vibrations.
a, and a, are the amplitudes of the two vibrations.
o, and o, are the epoch angles.

The ant,ultn frequency w is the same for both vibrations. The resultant displacement y of the
pmlrlv is given by,

s =Y+ 5
= a, sin (wf+ o) + a,sin (ol + a,)
= d, (sin wfcos o, + cos wesin &) +
a, (sin wf cos a, + cos o/ sin a,)
y = (a, cos o, + a, cos o) sin wf + (a, sino, + a, sin a,) cos wf ...(3)
We can wrile the displacement of the resultant motion as
y = Asin (0 + ¢)
y = Asin wfcos ¢ + Acos wfsin ¢ ..(4)
Ais the amplitude of the resultant motion and ¢ is the initial phase.
kquating the coefficients of sin w¢and cos w(in Egs. (3) and (4),

Acos ¢ =, cos o + a,cosa, ..(5)
Asin¢ = a sina, + a,sina, -..(6)

Squaring Eqs. (5) and (6) and adding,
A =a’+atl+2aa,cos (a, - o) (0

Dividing equation (6) by (5)-
a sinoy + asina,

tan ¢ = (8)

acosoy + d) cosu,

Equations (7) and (8) give the values of A and ¢.

ION OF TWO SIMPLE HARMONIC MOTIONS OF EQUAL TIME
T RIGHT ANGLES

article is simultaneously wby’ctod to two S_H. motions along two mutually
axes). Lel the displacements of the S.H. motions be
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@ The phase difference betwean the two S 11 motions

Fhe resiltant motion ix obtained by eliminating 7 from (1) and (2)
From equation (2)

S an

COS (M |

\
From cquation (1), [$1n f cos o+ cos wf sina
o

Substituting the values of sin w/ and cos wf in equation (3),

4

\ Vv }I' ,
CCosa t (] - Sssina
a b h*
-
‘ ‘V ( J’ ] ;
or cos a = t I —,—J sin o
a b y*
S & . 2xy yl .2
;S o8t o cosa = |1 5| sin” a
a b ab b
)
wiz Yo, 2 2 2X)’ '3
or -yt o [sinta + cost o] - “==cosa = gin? o
a b ab
2 2xy ,
3 + =5 - —=cosa = gin?qQ

(I) 'J) (lh

This represents the general equation of an ellipse.
Hence the resultant motion is in general elliptical.
Special cases:

() Hoa=0,cosa=1;,smao=0

Yoy
e |
a b

b
or y = —x,

a
This represents a straight line AB (Fig. 12.1) of slope b/a.
Y A C

Properties of
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The resultant motion is represented by the straight line CD passing through the origin and

having a negative slope.
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This represents an cllipse EFGH whose major and minor axes coincide with the coordinate axes.
(i) Ifo=m2and a = b, then x? +)y =

This represents a circle of radius a. Hence, the resultant motion 1s circular.

u”.lous Figures

When a particle is acted upon simultaneously by two S.H. motions at right angles to each
- gther, the resultant path traced by the particle is called Lissajous figures. The shape of the Lissajous’

figure depends upon (i) the amplitudes, (ii) the periods of the two component motions and (iii) the
shase difference between them.

123. EXPERIMENTAL METHODS FOR OBTAINING LISSAJOUS’ FIGURES
1. Optical method.

A and B are two tuning forks with frequencies in the ratio of 2 * 1 (Fig. 12.2).

LS

Screen

=
< 0
/ ><

Fig. 12.2

The prongs of A vibrate in a horizontal plane. The prongs of B vibrate in a vertical plane. M,
‘“sz are two small plane mirrors attached to the prongs of 4 and B respectively. It is adjusted that
be spot of light after reflection form M, and M, is obtained at O, the centre of the screen.

* When only the tuning fork 4 vibrates, the spot of light moves along XX".
* When only the tuning fork B vibrates, the spot of light moves along ¥Y".

* When 4 and'B vibrate simultaneously and are in phase, the spot of light traces the figure of
Cigtht, &
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Fig. 12.3

A knot is made at O between three strings O4, OB and OC. A and B are fixed to hooks in a rigid
frame. A funnel (F) having a fine nozzle is supported by three strings meeting at C'. Dry fine sand is
taken in the funnel. The length OC can be changed by moving the knot at O.

*« When the pendulum is displaced about the point O along XX, it vibrates with a time period

t,=2nyh/g.

» When the pendulum 1s displaced about the point B, along Y}, it vibrates with a time period

t,=2nl,/g.

* When both the motions are given simultaneously, grains of sand dropping out of the funnel
trace out Lissajous’ figures. The shape and size of the curve will depend upon the relative

amplitudes and time periods of the two rectangular S H.M.’s. If/, =1/4, thent/t,= N1/4

= 1/2, giving us a figure of *8". If the ratio between time periods is not exactly 1:2, the resultant
motion will gradually pass through various phases shown in Fig. 12.1.

12.4. USES OF LISSAJOUS FIGURES

(1) The form of a Lissajous figure enables us to determine the ratio of the time periods of
component vibrations. From the Lissajous’ figure, the number of times the curve touches the horizontal
and the vertical sides of a rectangle bounding the Lissajous figure, is found. If the curve touches the
horizontal side p times and the vertical side ¢ times, the ratio of the time periods is p -

: q.
(2) The Lissajous figures are used for the accurate determination of the frequency of a funing
fork.

__(3) Lissajous figures are used in obtaining beautiful designs for calico printing in textile
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Definition : [ a rigid body consists of a finite number of particles
of masses . m,, my ete., at distances r,, [y Iy ete., froma giwul :;lru: 'h::
tine XY (Fig. 7-1). the moment of inertia of the body about the gMn lli;no
18 gwt‘ll b)! ) 2 - |
J=m Fi+mnf+mpe, + ... =Impr

Unit : kgnr’,

Dimensional formula: [7] = [ML?]

Radius of Gyration : Suppose the whole mass of the body (M) is Fig. 7.1
concentrated at a point distant & from the axis such that Mg =X m 7 = 1.
then K is called the radius of gyration of the body about the given axis. & = \/ 77—M .

Physical Significance of M.L. In translational motion F = m a.

-y
In rotational motion t = I'a. This suggests that just as we associate a force with the linear
acceleration of a body, so we may associate a torque with the angular acceleration of a body about a
given axis. Mass M is a measure of the resistance a body offers to having its translational motion
changed by a giver, force. >unilarly, moment of inertia /is a measure of the resistance a body offers
(o having its rotational motion changed by a given torque. Thus M.L plays the same role in rotational
motion as mass does in translational motion.

7.2. PERPENDICULAR AXES THEOREM -
Statement : [/ | _and I are the moments of inertia of a lamina
about two rectangular axes OX and OY in its plane, its moment of inertia
about an axis OZ, perpendicular (o its plane, is I,= I, + I,
Proof : Let OX, OY be the two perpendicular axes in the plane
of the lamina and OZ an axis perpendicular to the lamina (Fig. 7.2).
Consider a particle P, of mass m in the plane of the lamina. x, y and
rare the distances of the particle from O¥, OXand OZ respectively.
Moment of inertia of the particle about OZ = m i ‘ Fig. 7.2
"~ M.I of the lamina about 0Z=Xmr
Similarly, M.1. of the lamina about ~ OX =Zm ¥

dM.L. of the lamina about OY =% m¥

2 =xX+y |
Zmﬂ=Zm()\2+y3)=2m)&‘+):my’
% mr =1,;mez=1y:)3my2=lx.
I?=[x+ly

4 NE
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7.3. THEOREM OF PARALLELAXES ——————————————

Statement : /f/ is the moment of inertia of a body about an axis throug'/f its centre of m?ss and
I" its moment of inertia about a parallel axis at a perpendicular distance h from the first axis, thep

I"=1+ MK, where M is the mass of the body. C A
Proof: 4B is an axis passing through the centre of mass of the body 8
G (Fig. 7.3.) CD is a parallel axis at a perpendicular distance & from 4B. & :
M 1s the mass of the body. &7 —)p(—x%
Consider a particle P of mass m at a distance x from 4B.
M.L of the particle P about AB = mx2
M.I of the whole body about AB = J = 3 m 2 —
M.I. of the particle P about CD = m(x + h)? D B
=m(x*+h +2xh) b

=mx’+mh*+2mxh.
M.1. of the whole body about CD
=I'=Zmx*+Imh+L2mxh
But ImxX =LTmh=MQK
: I'=1+Mh+2hImx.
Now, Z m x is the algebraic sum of the moments of all the particles about G.
Since the body is balanced about the centre of mass G,Zmx=0.
: I'=1+Mn



05 KINETIC ENERGY OF A ROTATING BODY

Consider a rigid body of mass M rotating with an angular
selocity ® about an axis thrlough O (Fig. 10.6). The body is composed
of a large number of particles of masses m, my, m,, ... situated at
distances 7'y, Fys T'ys oo from the axis of rotation. Every particle re-
volves with the same angular velocity .

The linear velocity (v, ) of the particle of mass m, is r,®. Then

. ] ]
K E of the particle of mass m; = E m, vlz — E m r12 ®2.

. . |
Similarly, K.E. of particle of mass m, = Emzrzzo)z and

$0 O1.

|
The K.E. of the whole body E = > m,r,z o’ + 1 m2r22 w® +

.....

= — (Zmrz) W’
= = o’
2
Here, I = Em#?, is the moment of inertia of the body about the axis of rotation.
1, 5
E=—-1w
2
If w=1J=2%xE

Hence the moment of inertia of a body may also be defined as twice its kinetic energy

of rotation, the angular velocity of the body being unity.
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Angular momentum, L = /o
I
Kinetic energy of rotation £ = 57

This is the relation between rotational kinetic energy and angular momentum of a
body about the same axis.



anics 0f @ Rigid Body
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0.7. TORQUE =
Consider a particle ata point P (Fig. 10.8). Let the posit
: 1on

i { Prelative to an ongin ¢ )_b)e r.Let Fbe the force acting i
4150 particle. Then the torque 1 acting on the particle with el
spect © the origin O is defined as 4
- - S r ;
r‘ = rxF (1) P m\e
Torque 1s a vector quantity. Its magnitude is given by s
=rFsing (L) X

Here, 0 1s the angle between rand F. Its direction is normal R

o the plane formed by r and F. If one swings r into F through the smaller angle between them with

~ . —
the curled fingers of the right hand, the direction of the extended thumb gives the direction of -

Torque has the dimensions of force times distance, i.e., ML2T-2.
The unit of torque 1s newton metre (Nm).

10.8. ANGULAR MOMENTUM

Consider a particle of mass m and linear momentum p at a position r relative to the origin O
(Fig. 10.9). The angular momentum / of the particle with respect to yi
the origin O is defined as

I=rxp

l=rxp=m(rxv)
Angular momentum is a vector. Its magnitude is given by
I=rpsin0
Here, 0 is the angle between r and p. Its direction is normal to
the plane formed by r and p. The sense is given by the right-hand rule.
The unit of angular momentum is kg m?s~' or Js.
For circular motion, v = r ®. The magnitude of I is mr o = Jw.

10.9. RELATION BETWEEN TORQUE AND ANGULAR MOMENTUM

We have the relation I =rx*p
Differentiating this relation with respect to 1,

il- = E’L X p + F X f.ig
dedtf dt
dr/dt = v = instantaneous velocity.

Now, (dridi) x p =v > (mv) = 0.
and dp/dt = Force F acting on the particle.

ﬂ =rx F

dt

N

But, by definition, r x F= T = torque of F about 0.

a7

—_= T.

dt
Thus, the time rate of change of the angular momentum of a particle is equal to the torque

dcting op i

;&. D —UUUUUEET A .



+10.THE COMPOUND PENDULUM

Any rigid body capable of oscillating freely about a horizontal axis passing through it is a
comwund pendulum.

To find the period of oscillation of a compound pendulum :

Let O be the point of suspension and G the centre of mass (Fig. 6.8).
s the equilibrium position, OG is vertical. OG = h. Suppose the body is
gven a small angular displacement about O and let go. The centre of mass
G1s displaced to G'. The body oscillates about the equilibrium position. It
an be shown that the motion i1s simple harmonic. Let M be the mass of the
pendulum. The restoring couple due to gravity = Mgh sin 0. The couple is also
equal to 1 (@®0/dr?) where 1 = M.I. of the body about the axis of rotation and
(#8/df) = angular acceleration.

'The equation of motion of the body is

e ——————




Propertieg
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\mr

/ ‘—I.f-] = Mygh sin 0
dr-
2 " A/ M 2
- (_I__U L Aj&ﬂ Smec_ﬁﬁio 1% snn9~6whenejq$
dr’ / / . n‘la{”

angular acceleration (20/dF?) is Proportiong,
to

Now Mgh// is a constant quantity. Therefore, . (
dy is simple harmonic.

the angular displacement 6 and the motion of the bo

displaccme’l;tr 7 __0_,;
) PR — —_— n J &)
Period T = 27 \[a:cldcr;ml (Mg(i 0)
/
= 2x —!—* I;
Mgh

Joe= digii st Mh? by the parallel axes theorem :
I = Mi2 + M2 [where k = Radius of gyration of the bog ;
about an axis passing through Cm)],

or I=M@E+H). - |

T =2n _A_/[_(k__t;i—) or7 =21 -
Mgh gh ~()

Equivalent simple pendulum

A simple pendulum which oscillates with the same period as the compound
pendulum is called the equivalent simple pendulum.

In the case of a simple pendulum of length L, the period

fL
T=2n |—
» ..(2)

Comparing expressions (1) and (2),

k* + h?

the length of the equivalent simple pendulum = L = Fie. 6.9
ig. 6.

Centre of oscillation : Produce‘ the line OG to C such that

k2+h2=h+£
h h

Then the point C is called the centre of oscillation (Fig. 6.9)
To show that the centre of suspension and the centre of oscillation are interchangeable.

O is the centre of suspension and C is th R
oG = h. Is the centre of oscillation of a compound pendulum and

OC =

kg

Then OoC =L=

: " REhL-W=h(L-h) =06 x CG
e symmet t S1 = .
'he sy ry of the expression &2 = OG x CG shows that, if the body is suspended abou!

is through C, O wouid be the ¢
15 ) entre of oscillati 1 1ati
interchangeable. scillation. Hence 'the centre of oscillation and




A’awlatlon ot 1 01
u
“mimum time of oscillation of a compound et
2 2
T=2n k* + h
gh
1] be a minimum when, — [k_zi_hi .
™ " dh h =
d k2 | g
i (—/f,[h‘i'-%—} —O,J.e,,]_h_2=00rk=h

Therefore, the period is a minimum when the radius of gyration about a parallel axis through
he centre of mass of the body = The depth of the cm below the point of suspension.

petermination of g with compound pendulum A

A compound pendulum consists of a heavy uniform metal bar about a metre long.
[t has a number of holes drilled at regular intervals on either side of the centre of mass G
(Fig. 6.10]. 2

The horizontal knife-edge is passed through the hole near the end 4. The period of
oscillation is determined and the distance of the knife-edge from the end A4 is measured.
The experiment is repeated and the bar is made to oscillate about the knife-edge placed
successively in the different holes from A to B. In each case the period of oscillation (7)
and the distance of the position of the knife-edge from the same end A4 are noted. Fig. 6.10

A graph is plotted between the period, (on y-axis) and the Y
distance from A4 (on the x-axis).

Two curves as shown in Fig. 6.1]1 are obtained. A
horizontal line PQRS is drawn cutting both the curves at points

Time- Period (sec)

P,Q,Rand S. P, O, R and § are then the four points on the bar P __'_ _r_;‘ '
collinear with the centre of mass having the same period. Urap™- Qs TV RR T s
PR=(QS= L, the length of the equivalent simple pendulum. U o i
Therefore, if 1 be its time period given by the ordinate of any E
one of the points P, O, R or S we have, , <R . X
L o 20 40 60 80 100
{1 =21 \/—;- or g =4n ’—2 Distance fronl:i;n:ﬁnd of bar (cms)

Knowing L and ¢, we can calculate the value of g at the given place.

Example 10 : 4 compound pendulum is formed by suspending a heavy ring of radius 4.905
metres. What is the length of the string for the minimum period ? Calculate this period.

Since the ring is large and heavy, the weight of the string may be neglected so that the centre
9 mass of the compilind pendulum will be the same as that of the ring, i.e., the centre of the ring.

Let mand R

M1 of the

Its centre 2

g mass and radius of the ring. If the ring oscillates in its own plane,

? ’.,'..v 1hr0ugh} e =

Where f i the radi§

Plag the ring about an axis through its centre and perpendicular to its
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The period is minimum when 4 = h, where h = the distance of the point of suspension frop, the
centre of mass of the nng. This gives h = R.
t.e.. the length of the string is zero and the ring is suspended at a point on its periphery,

2, ;2
We have, T=2n J;( +hh . T'is mimmum when k = h
g
2 2 2k 2R
.. =2n N ek =21 —=21t‘/— ('.'k:R)
min kg g g
Here, R =4905m, g=9.81 ms2

Hence T, = 2% ]%ﬁ- =6.282s.

Example 11 : 4 uniform rod of length 1.2 m oscillates about a horizontal axis of rotation
passing through one end. Find the period of oscillation. Find the positions of the other points aboy,
which the period is same. Also calculate the minimum period possible and the position of the axis of
rotation for obtaining the minimum period.

Here, K =PN2=(1.22%12;h=12=0.6m.

2 2 2 2
roon [E48 (02112408 | o
gh 9.8x 0.6

The position of other points, about which the period is same : (i) the other end of the rod .

. Kkt (1.2 /12
i) the points distant — = —2 "=
(1) poi 1s p 0.6

k 2/
T = 20 2—=2n\/—*——2x(12 2) _1em1s
min g 9.8

Position of the axis of rotation for obtaining the minimum period = k = 1.2//12 = 0.346 m
from centre of mass of rod.
Example 12 : Prove that in a compound pendulum, there are Jour points collinear with the

centre of mass of the pendulum about which it has the same period of oscillation. Hence obtain the
length of the equivalent simple pendulum.

2 2 A2 (32 2
T=2n fk il ;Squaring,T2=Ahr (k" +h7)
g h g h

= 0.2 m from the centre and on either side.

T’
Rearranging, 4’ —g—._,— h+k? =0
4n
This is a quadratic equation in 4 and gives two values of h.
2 2 ma
hy = £ 7:: [T k?
8n 64n*
2 2md
g.T gd 2
d hy, = = -k
" 2 8’ 64n?

points collinear with the ¢m about which the periods are equal.
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V—— h+h,=g, T%/(4n?)

= Length of the equivalent simple pendulum.

£ ample 13 : Auniform circular disc of ra
x Y

dius R oscillates i j ;
‘ —_ , €S In avertical plane about a horizontal
J the distance of the axis of rotation from P

>t g centre for which the period is minimum. What
'“;,c salue of this pertod

We have, T=2n\(k* +h*)/ (g . h)

7is minimum when h = k.

. fin

Tmin =2n ‘/(kz w: kz)/(kg) =2n \/Zk/g
.of a disc about an axis perpendicular
Ni.'lo I rp. - 1=Mk2=lm2
to its plane and passing through its centre 2

where M is the mass of the disc and R, its radius.

k = R/\2.

Thus, 7' is minimum when the distance of the axis of rotation from the centre is R /~/2.

2R/ f
= on 2R V2 RV2 _, [laiaR
g g g

Example 14 : 4 uniform circular disc 0f 0.2 m radiu
s circumference. Calculate the period of oscillation.

s oscillates in its own plane about a point

We have, T = 2n\(k2 + h)/ (g h)
Here, I =Mk*=MR*20rk*=R*2:h=R

2 2
T = 2 (R°/2)+R o 3—R=21; 3x0.2
g.R 2g 2x9.8

=1.099 s
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9.5. BIFILAR PENDULUM-PARALLEL THREADS —

When a heavy uniform rod s suspended horizontally by means ol two chfli vc‘rhcul threag al
equal distances from the centre of gravity of the rod, the arrangement 1s czlllcrfl .|‘b|hlur sus'pcnsion
The suspension may be made by means of two parallel or two nonparallel threads. We conside, here
suspension with parallel threads. R

Let 4B represent the equilibrium position of the rod of :\\
mass m. The weight of the rod mg acts vertically downwards ple--=v--a- 2d~---- o ;:F
at its centre of gravity O (Fig. 9.7). The rod is suspended by \ Lo o
two equal threads (P4 and OB) of length / and separated by a .'.| : : R
distance 24, Suppose now the rod is displaced into the position n g 4""‘ /
A’B’ through a small angle 0, about a vertical axis through O / ‘)\1 (_1_::8 ,-'h"ﬂ l

The threads now take up the position 24’ and QB at an | P L r‘,"
angle 0 with their original positions. “ﬁ’.,' Teos ¢§'§ :'f'

Let T be the tension in cach thread, acting upwards ¥ glﬁ/v/B“\/’l
along the thread. T may be resolved into two components, one  A]__\| 9 ":\ 0
vertically and the other horizontally. The vertical components A py A lo Tsing
are each of magnitude T cos ¢, which balance the weight of the K mg
rod. Hence, 27 cos ¢ = mg or T cos ¢ = mg/2. Teing Fig. 9.7

Now from the figure, 40 = Ipor¢= ilq

d0 « ‘
08 = cos[—l—) - since 0 1s small

T =mg/2.
Now the horizontal component of the tension (T'sin ¢) is along B’ Band A’ A. The two horizontal
components of the tension are equal, opposite and parallel. Hence they constitute a couple, tending
to bring the rod back into its original position. The two forces act at right angles to the axis of the

rod. Hence moment of the restoring couple = (T'sin ¢) 2d = T ¢ 2d (" sin¢=9)
=% (%‘—!)Zd: 28 Oz_d 2d = "84

Let 7 be the M1, of the rod about its axis of rotation and 0/dr, its angular acceleration.
Hence the equation of motion of the rod is given by
7 d’0 - mgd? 4’0 - mgd?

:———-——.eo

dr’ ! dr? I7;

mg¢12 : _
/ " 1S a conslant quantity.

2
Clearly, o 0 since
dr*

Hence the rod executes S.H.M., and its time period is
1

2n
[ = = =2n 2
Jmgd’ /(I mgd

Now / = mk? where k is the radius of gyration of the

rod about the axis of rotation. Hence

t=2n L
d\g
or g =4l dP).

Thus g at the given place is determined,



